Toyota Vista (3S-FSE). Заслонка SCV – диагностика и ремонт
Toyota Vista (3S-FSE). Заслонка SCV – диагностика и ремонт
SCV заслонка – диагностика и ремонт
“. когда разберешься с проблемой – она кажется совсем пустяшной, но когда не понимаешь до конца – потеешь)))),- Виктор Вячеславович Костюк, Диагност, город Чита, на нашем Форуме как ” vitoks “)
Вообщем, дело обстояло так: Виста Ардео с двигателем 3S-FSE пришла с бензином в масле, плохим запуском, одним словом – со всем “букетом” свойственным для этих моторов.
Что сделали для начала: провели чистку впускного коллектора, даже по технологии “Мека” попытались добраться до клапанов и почистили их (насколько смогли), заменили сальник на насосе, соответственно ремень – свечи – масло, и машина поехала.
Радость хозяина трудно описать, практически все владельцы таких моторв, первые дня – три после ремонта “прислушиваются – принюхиваются – приглядываются” к ним, пока не поймут что это надолго.
Но вот через месяц загорелась лампа “ЧЕК” и машина снова приехала на диагностику.
Сканер (CarmanScan2) выдал ошибку по SCV, по – моему P1416, тот самый 58 код, который так часто ставит нас в тупик. Я так думаю, что то, что мне удалось обнаружить – ещё не всё что может “выкинуть” данный узел, так как у 58 кода есть три OBD обозначения – P1415, P1416, P1653.
Так вот, зная, что коллектор у меня ещё чистый, я решил добраться до узла SCV и заменить его полностью(был в запасе).
Так и сделал.
Машина ушла.Через два дня вернулась опять с такой же неисправностью, вот где поневоле задумаешься!
Как мы привыкли доверять японским (“тойотовским”) узлам, датчикам и т.д.
Но как бы то ни было, решил еще раз все разобрать, проверить ход заслонок и детально рассмотреть узел SCV, что и сделал:
фото 1 – корпус SCV фото 2 – статор SCV
Заслонки действительно оказались ещё чистыми (бывало намного хуже), а вот когда разобрал полностью узел SCV, то обнаружил, что одна из щёток (графитовых) выпала, то есть, отлетела от шлейфа (то ли он отгорает от перегрузки, когда заслонки сильно “засажены”, то ли просто перетёрся (мне по душе первое), так как у японцев редко что перетирается.))))
фото 3 – для сравнения справа показана “спичка обыкновенная”, а слева – та самая отвалившаяся щетка
Сразу решил проверить второй узел SCV, который снял с машины до этого – та же картина.
Честно сказать, найти подходящие по размеру щётки оказалось не так легко, но нашёл, нашёл мастерскую по ремонту электро-оборудования (дрели, шлиф – машинки и прочее), хорошо что такие появились сейчас))), так вот, взял у них самые маленькие щётки (раза в два больше наших) и просто подогнал под японский размер.
фото 4 – узел SCV в сбор фото 5 – “щеткодержатель”
фото 6 – якорь мотора SCV
фото 7 – слева: самая маленькая щетка, какую можно было найти в магазинах
справа – оригинальная щетка, под размер которой и была “подогнана” приобретенная в магазине
Самое интересное , что щётка даже с оторванным шлейфом имеет слабый контакт с щёткодержателем, что и вводит нас в заблуждение, то есть, ошибка удаляется и появляется вновь через некоторое время, хаотично, без какой – либо системы.
При сборке узла SCV надо обращать внимание как стоял статор (с магнитами), так как проворот на 13 (крепежные отверстия совпадают))) оставляет ошибку 58, но лампу ( CHECK ) не зажигает, кроме того, пропадает четвёртая передача и двигатель не работает в режиме обеднённой смеси , во как.)))
Костюк Виктор Вячеславович ( на нашем Форуме ник – vitoks )
Диагност
г. Чита
Фото Автора
Toyota Vista/Vista Ardeo 1998-2003
1ZZ-FE (1,8) · 1AZ-FSE (2,0 D-4) · 3S-FE (2,0) · 3S-FSE (2,0 D-4)
Ремонт. Эксплуатация. Техническое обслуживание.
Двигатель Toyota 3S-FSE
Двигатель Toyota 3S-FSE оказался одним из самых технологичных во времена своего выпуска. Это первый агрегат, на котором японская корпорация опробовала непосредственный впрыск топлива D4 и создала целое новое направление в строительстве автомобильных моторов. Но технологичность оказалась палкой о двух концах, поэтому FSE получил тысячи негативных и даже гневных отзывов владельцев.
У многих автомобилистов вызывает определенное недоумение попытка ремонта своими руками. Даже снять поддон для замены масла в двигателе оказывается крайне сложно из-за специфических креплений. Мотор начали производить в 1997 году. Это время, когда специалисты Тойота начали активно превращать искусство автомобилестроения в хороший бизнес.
Основные технические характеристики мотора 3S-FSE
Движок был разработан на базе 3S-FE – более простого и неприхотливого агрегата. Но количество изменений в новой версии оказалось довольно большим. Японцы сверкнули своим пониманием технологичности и установили в новую разработку практически все, что можно было назвать современным. Тем не менее, и в характеристиках можно найти определенные недостатки.
Вот основные параметры двигателя:
С одной стороны, этот агрегат имеет отличное происхождение и удачную родословную. Но он совершенно не гарантирует надежности в эксплуатации после 250 000 км. Это очень малый ресурс для моторов данной категории, да еще и тойотовского производства. Именно в этот момент начинаются проблемы.
Впрочем, капитальный ремонт провести можно, чугунный блок не является одноразовым. А для этого года производства и данный факт уже вызывает приятные эмоции.
Ставили данный двигатель на Toyota Corona Premio (1997-2001), Toyota Nadia (1998-2001), Toyota Vista (1998-2001), Toyota Vista Ardeo (2000-2001).
Преимущества двигателя 3S-FSE – в чем плюсы?
Замена ГРМ производится 1 раз в 90-100 тысяч км пробега. Это стандартный вариант, здесь стоит практичный и простой ремень, нет никаких проблем, характерных для цепи. Метки выставляются по мануалу, ничего выдумывать не нужно. Катушка зажигания взята с донора FE, она простая и работает долго без особых проблем.
В распоряжении данного силового агрегата находится несколько важных систем:
- хороший генератор и в общем неплохое навесное оборудование, которое не вызывает проблем в эксплуатации;
- пригодная к обслуживанию система ГРМ – достаточно взвести натяжной ролик, чтобы еще больше продлить работу ремня;
- простая конструкция – на станции могут проверить двигатель вручную или считать коды ошибок с компьютерной системы диагностики;
- надежная поршневая группа, которая известна отсутствием проблем даже при больших нагрузках;
- удачно подобранные характеристики АКБ, достаточно следовать заводским рекомендациям производителя.
То есть, мотор нельзя назвать некачественным и ненадежным, если учитывать его преимущества. В процессе эксплуатации также водители отмечают низкий расход топлива, если не давить на гашетку слишком сильно. Радует и местоположение основных сервисных узлов. До них довольно просто добраться, что несколько снижает стоимость и срок обслуживания во время регулярных ТО. Но ремонтировать в гараже собственными силами будет непросто.
Минусы и недостатки FSE – главные проблемы
Серия 3S известна отсутствием серьезных детских проблем, но модель FSE выделилась на фоне своих собратьев по концерну. Проблема в том, что на данную силовую установку специалисты Toyota решили установить все актуальные на то время наработки для экономичности и экологической чистоты. В итоге есть ряд проблем, которые никак не решаются в процессе использования двигателя. Вот лишь некоторые из популярных неполадок:
- Топливная система, а также свечи нуждаются в постоянном обслуживании, чистить форсунки приходится практически постоянно.
- Клапан EGR – ужасное нововведение, он постоянно засоряется. Лучшим решением будет заглушить ЕГР и удалить его из системы вывода отработанных газов.
- Плавают обороты. Это неизбежно случается с моторами, так как изменяемый впускной коллектор теряет свою эластичность работы в какой-то момент.
- Все датчики и детали электроники выходят из строя. На возрастных агрегатах проблема электрической части оказывается колоссальной.
- Мотор не заводится на холодную или не запускается на горячую. Стоит перебирать топливную рейку, чистить форсунки, ЕГР, смотреть на свечи.
- Насос выходит из строя. Помпа требует замены вместе с деталями системы ГРМ, что делает ее ремонт очень дорогим.
Если вы хотите знать, гнет ли клапана на 3S-FSE, лучше не проверять это на практике. Мотор не просто загибает клапана при обрыве ГРМ, вся ГБЦ после такого события идет на ремонт. А стоимость такого восстановление окажется чрезмерно высокой. Часто на морозе бывает такое, что двигатель не схватывает зажигание. Замена свечей может решить проблему, но также стоит проверить катушку и прочие электрические детали зажигания.
Ремонт и обслуживание 3S-FSE – основные моменты
В ремонте стоит учитывать сложность экологических систем. В большинстве случаев экономически выгоднее их отключить и удалить, чем ремонтировать и чистить. Набор уплотнителей, таких как прокладка блока цилиндров, стоит покупать перед капиталкой. Отдайте предпочтение наиболее дорогим оригинальным решениям.
Проследите за работой всех датчиков, особое внимание на датчик распредвала, автоматику в радиаторе и всей системе охлаждения. Правильная настройка дроссельной заслонки также может оказаться сложной.
Как произвести тюнинг этого мотора?
Не имеет никакого экономического и практического смысла увеличение мощности модели 3S-FSE. Сложные заводские системы, такие как цикличное изменение оборотов, к примеру, не будут работать. Стоковая электроника не справится с задачами, блок и ГБЦ также будут нуждаться в доработках. Так что устанавливать компрессор неразумно.
Также не стоит задумываться о чип-тюнинге. Мотор старый, рост его мощности закончится капитальным ремонтом. Многие владельцы жалуются, что после чип-тюнинга мотор гремит, изменяются заводские зазоры, повышается износ металлических деталей.
Разумный вариант тюнинга – банальный свап на 3S-GT или подобный вариант. С помощью сложных доработок можно получить до 350-400 лошадиных сил без ощутимой потери ресурса.
Выводы о силовой установке 3S-FSE
Данный агрегат полон сюрпризов, включая и не самые приятные моменты. Именно поэтому назвать его идеальным и оптимальным по всем статьям невозможно. Двигатель теоретически простой, но множество экологических дополнений, таких как EGR, дали невероятно плохие последствия в эксплуатацию агрегата.
Владельца может радовать расход топлива, но он также очень зависит от манеры поездки, от веса автомобиля, от возраста и износа.
Уже перед капиталкой мотор начинает кушать масло, потреблять на 50% больше топлива и звуковым сопровождением показывать владельцу, что сейчас самое время готовиться к ремонту. Правда, ремонту многие предпочитают свап на контрактный японский мотор, и это нередко дешевле капиталки.
Дроссельная заслонка двигателя Toyota 3S-FSE
Дроссельная заслонка двигателя Toyota 3S-FSE
На рисунке достаточно схематично, изображён узел дроссельной заслонки двигателя.3S-FSE (D-4) автомобиля Toyota Nadia выпуска 1999 года для так называемого внутреннего рынка Японии. Вид со стороны воздушного фильтра.
В связи с тем, что соотношение воздух – топливо на данном двигателе составляет 25 : 1, то есть на 25 частей воздуха расходуется 1 часть топлива (двигатель D-4 можно назвать условно двигателем, работающим на обедненной смеси), то система электронного управления двигателем реализует два режима работы:экономичный мощностной
При работе в экономичном режиме на панели приборов загорается синий транспорант ECONO, но как только двигатель переходит в режим работы мощностной – лампочка гаснет.В случае, если по каким-либо причинам экономичный режим не работает, на панели приборов высветится транспорант ECONO и транспорант CHECK. А при считывании кодов неисправности блок управления выдаст определенный код неисправности.В связи с тем, что данная модель двигателя является достаточно продвинутой, то считывание кодов неисправностей производится специальным диагностическим сканером.
Режим мощностной реализуется в том случае, если достаточно сильно надавить педаль газа, например, при необходимости резкого ускорения машины при обгоне (то есть, перемещение дроссельной заслонки будет производиться напрямую тросиком газа). На обычной машине этот режим называется кик-даун.
В этом случае режим econo автоматически отключается (функции работы двигателя на холостом ходу остаются) и водитель управляет двигателем как обычно – тросиком педали газа передвигая дроссельную заслонку.
В связи с этим координально изменен узел дроссельной заслонки. Если на обычных машинах там находится только TPS (датчик положения дроссельной заслонки), то здесь, кроме TPS, располагаются:
Серводвигатель со встроенной муфтой
Sub-Throttle posicion sensor (это пока условное название).
Принцип действия
Если при выключенном зажигании нажать на педаль газа, то не почувствуем привычного усилия при перемещении дроссельной заслонки.
А сняв воздуховод и заглянув внутрь корпуса дроссельной заслонки, увидим, что при нажатии на педаль газа: тросик двигается, рычаг дроссельной заслонки двигается, а сама дроссельная заслонка – стоит на месте.
И только, если продолжать нажимать на педаль газа далее – только тогда можно увидеть, что дроссельная заслонка пришла в движение.
Дело в том, что это и есть реализация принципа econo на данном двигателе (при движении в нормальном городском режиме, без ненужных ускорений, обгонов и так далее, электроника полностью контролирует все параметры и выводит расход топлива на уровень не более 7-8 литров на 100км).
Необходимое примечание: в дальнейшем в тексте будет использовано выражение: двигаем рычаг дроссельной заслонки до упора. Понятие до упора означает, что мы нажимаем педаль газа, выбираем тросик, который в свою очередь двигает рычаг дроссельной заслонки до тех пор, пока он не упирается в саму дроссельную заслонку.
Работа
При включении зажигания блок управления (ECM) должен знать, в каком положении находится дроссельная заслонка и одновременно проверить готовность (работоспособность):
1 – TPS
2 – Sub-Throttle
3 – Серводвигателя
4 – Муфты серводвигателя
Для этого, после включения зажигания, блок управления (ECM) подает сигнал на серводвигатель и муфту серводвигателя и очень быстро передвигает дроссельную заслонку вверх, до упора (ввернутого в корпус дроссельной заслонки стопорного винта) и обратно вниз – на исходное положение. При этом блок управления (ECM) контролирует приходящие сигналы как от TPS, так и от Sub-TPS и если сигналы правильные – блок управления разрешает работу всей системы в целом.В случае же, если какой-то сигнал будет неправильным, то блок управления (ECM) блокирует работу серводвигателя и муфты серводвигателя.
Если же все нормально и исправно, то далее:
При нажатии на педаль газа, тросик начинает перемещать рычаг дросельной заслонки, на оси которого (ближе к радиатору автомобиля) расположен Sub-Throttle posicion sensor. Это очень точное, неразборное и нерегулируемое устройство, которое очень четко отслеживает перемещение рычага дроссельной заслонки даже не на один градус поворота, а на доли градуса. Эта информация передается в блок управления (ECM), обрабатывается и возвращается на серводвигатель со встроенной муфтой. В зависимости от угла поворота рычага дроссельной заслонки серводвигатель (жестко связанный с дроссельной заслонкой) начинает передвигать дроссельную заслонку в том или ином направлении. Вот здесь уже вступает в работу и TPS, потому что он перемещается только в том случае, если работает серводвигатель. Информация от TPS идёт не только на основной блок управления (ECM), но и на блок управления АКПП и блок управления Cruise Control. Правильная работа серводвигателя контролируется и корректируется так же Sub-Throttle.
Блок управления отслеживает следующие ошибки:
Для Sub-Throttle – обрыв или замыкание цепи, малофункциональность
Для TPS – неправильная установка TPS, обрыв или замыкание цепи
Серводвигатель – не контролируется блоком управления напрямую (то есть, если мы отсоеденим разъём серводвигателя, то блок управления ошибку на панели приборов не покажет), а этот контроль происходит через Sub-Throttle и TPS (подробнее об этом будет рассказано ниже).
В случае полной неработоспособности узла дроссельной заслонки блок управления (ECM) понимает, что в этом случае не работает и система econo и на панели приборов начнет мигать транспарант синего цвета с надписью econo.
Для проведения самодиагностики необходимо найти под рулевой колонкой разъём самодиагностики:
1. Выключить зажигание.
2. Подходящей проволочной перемычкой перемкнуть указанные на рисунке контакты.
3. Включить зажигание.
4. Лампочка CHECK на панели приборов начнет мигать, показывая или коды неисправности или, наоборот, исправность всей электронной системы.Надо отметить, что на данной машине система самодиагностики не приспособлена к считыванию кодов неисправностей без специального диагностического сканера и вся описанная процедура – есть небольшая самодеятельность.Кроме того, на данной машине система самодиагностики стала намного упрощеннее: при перемыкании контактов 5 и 13 на панели приборов посредством мигания лампочек происходит отображение неисправностей не только системы электронного управления двигателем, а так же системы ECONO, ABS, TRC, Air Bag, Cruise Control и автоматической коробки передач (гидромуфты).Стоит отметить, что в случае неисправности системы экономичности на панели приборов транспорант синего цвета ECONO будет выдавать код неисправности 31 (три длинных вспышки и одна короткая).Однако остановимся на коде неисправности №89 , как наиболее ярком представителе неработоспособности не только системы econo, но и всего узла дроссельной заслонки в целом. О чём говорит этот код неисправности:
неисправность TPS
неисправность Sub-Throttle
неисправность серводвигателя
неисправность муфты серводвигателя.В слово неисправность входят такие понятия, как неисправность самого узла, обрыв или короткое замыкание цепи для данного узла и, наконец – неисправность блока управления (ECM).Все вышеописанные неисправности как раз и относятся напрямую к узлу дроссельной заслонки. Вот здесь самое время произвести необходимые проверки для конкретного вычленения неисправности. Начнем с Sub-Throttle posicion sensor, расположенном на одной оси с рычагом дроссельной заслонки.
Это разъём непосредственно Sub-Throttle на корпусе дроссельной заслонки. Устройство, в принципе, неразборное и нерегулируемое. Однако, вследствии того, что данная машина, на примере которой и проводится данное описание, являлась утопленником, пришлось крайне осторожно и аккуратно разобрать это устройство что бы проверить внутреннее состояние как и контактов, так и дорожек для полной уверенности в том, что далее к этому узлу возвращаться не стоит.Но всё это – чисто внешне.Работоспособность же данного устройства проверяется, в принципе, таким же способом, как и обыкновенный TPS, то есть по сопротивлению.Для начала, перед проверкой, надо внимательно осмотреть корпус дроссельной заслонки и убедиться в том, что имеющиеся там два стопорных винта посаженные на жёлтую краску с места не стронуты. Эти стопорные винты отрегулированы ещё на заводе-изготовителе и трогать их или эксперементировать с ними не следует. Иначе настройки как и TPS, так и Sub-Throttle будут сбиты и вся система (вполне вероятно) станет неработоспособной.
Проверка
Зажигание выключено. Дроссельная заслонка находится в исходном положении (педаль газа не нажата). Разъём с Sub-Throttle снят.
Контакты 1 и 3 Сопротивление между контактами должно составлять от 1.800 до 1.900 Ом. Начинаем вручную двигать дроссельную заслонку.Сопротивление должно медленно (без провалов и рывков) снижаться до 1.600 – 1.650 Ом. До тех пор, пока рука не почувствует, что свободного хода у заслонки не осталось: то есть, рычаг дроссельной заслонки уже уперся в дроссельную заслонку и если его двигать далее, то вместе с ним пойдет и дроссельная заслонка.Двигаем далее все вместе: рычаг дроссельной заслонки и саму дроссельную заслонку.До упора.Сопротивление должно уменьшиться до 850 – 880 Ом.
Контакты 1 и 2 Сопротивление между контактами должно составлять 1.600 – 1.800 Ом. Вне зависимости от того, двигаем мы заслонку или нет.
Контакты 1 и 4 Начальное сопротивление между контактами должно составлять 1.390 – 1.420 Ом. Вручную двигаем рычаг дроссельной заслонки. При движении до упора в дроссельную заслонку сопротивление падает до 460 – 480 Ом.
Если двигать далее, то сопротивление уменьшается и становится равным 100 Ом.
Теперь посмотрим распиновку и цвет проводов TPS и Sub-Throttle:
На рисунке указаны начальные напряжения при включенном зажигании. Как обычно, обращаем внимание на наличие минуса и питания.
Проверка серводвигателя и муфты серводвигателя.
Работоспособность как электродвигателя, так и муфты сначала проверяется по сопротивлению.
Контакты №1 и №2 – обмотка электродвигателя. Сопротивление составляет от 1.7 до 1.9 Ом.
Контакты №3 и №4 – обмотка муфты. Сопротивление составляет от 5.0 до 5.4 Ом.
При включении зажигания контакт №4 станет минусом, а на контакт №3 придет 5.0 вольт.
Следует учитывать еще один способ проверки узла дроссельной заслонки, в частности самого серводвигателя и его муфты.
Способ народно – демократический, не требующий никаких приборов: включить зажигание и, наклонившись к узлу дроссельной заслонки послушать и определить – издает ли узел какой-либо звук. Если будет слышен тихий жужжащий звук – узел дроссельной заслонки работает и кода неисправности №89 в принципе быть не должно.
Другой код неисправности может быть, например, неисправность TPS, Sub-Throttle, но кода неисправности №89 – нет.
Проверка работоспособности TPS
Разъём на TPS – одет.
Не включая зажигание проверим TPS по сопротивлению.
Проверять будем между определенными контактами и массой.
Для проверки лучше всего использовать цифровой мультиметр.
Контакт № 2 – масса – 690 Ом. При движении рычага дроссельной заслонки до упора сопротивление не меняется, но как только дроссельная заслонка приходит в движение, сопротивление плавно растет до 1.100 Ом
Контакт № 1 – масса – 230 Ом. При движении дроссельной заслонки сопротивление не меняется
Контакт № 3 – масса – 950 Ом. При движении дроссельной заслонки до упора сопротивление не меняется, однако, как только рычаг дроссельной заслонки начнет двигать саму дроссельную заслонку – сопротивление резко вырастает до 1.04 – 1.06 Ком и при дальнейшем движении начинает плавно уменьшаться до 550 Ом.
Двигатель Toyota 3S-FSE (D4)
Бензиновый агрегат Toyota 3S-FSE появился в производственной программе концерна в 1996 г. Мотор построен на базе блока 3S-FE, который начал выпускаться в середине 80-х гг. На новом двигателе была внедрена инновационная система непосредственного впрыска, получившая обозначение D4. Первое время силовые агрегаты поставлялись только на внутренний рынок Японии, где конкурировали с моторами Mitsubishi, оснащенными похожей системой GDI.
Характеристики
Применяемость
Toyota Camry XV10
Toyota Carina ED, второе поколение (ST180)
Toyota Corona, десятое поколение (T210)
Toyota Vista, пятое поколение (V50)
Конструкция
Рядный 4-цилиндровый двигатель 3S-FSE оснащен поршневой группой с усиленной конструкцией, которая обеспечила безотказную работу при повышенной степени сжатия. В системе подачи топлива применен механический ТНВД, обеспечивающий подачу топлива под высоким давлением (по нормативам завода до 120 бар). Часть выхлопных газов (до 40% объема) отводилась через систему рециркуляции обратно в цилиндры. Такая схема работы позволила сократить количество вредных выбросов в атмосферу.
Блок цилиндров изготовлен из высокопрочного чугуна. Конструкция детали позволила выполнить зеркала цилиндров непосредственно в теле блока. Головка блока литая из алюминиевого сплава, включает в себя 2 распределительных вала. В конструкции ГРМ применена фирменная система VVTi, изменяющая фазы газораспределения вала впускных клапанов. Настройка зазоров в клапанном механизме выполняется при помощи шайб, которые устанавливаются между кулачком и толкателем.
Коленчатый вал имеет 5 опор. Спереди и сзади установлены сальники, предотвращающие течь масла. Система смазки принудительная, запас жидкости объемом 4,5 л находится в поддоне. При нормальных условиях температура масла составляет 80°С. Охлаждение принудительное, циркуляция жидкости выполняется насосом. Объем антифриза зависит от типа коробки передач, находится в пределах 5,7-5,8 л.
Впускной коллектор на двигателе 3S-FSE оснащен механизмом изменения поперечного сечения каналов, на входе установлен электронный дроссель. Регулировка каналов выполняется шаговым электродвигателем. Особенностью конструкции двигателя является корректировка соотношения количества топлива и воздуха для разных условий эксплуатации. На холостом ходу топливная смесь бедная, что способствует снижению расхода топлива и сокращению выбросов. По мере увеличения нагрузки состав смеси корректируется в сторону обогащения.
Инжектор мотора оборудован топливной рейкой и модернизированными форсунками, приспособленными для работы под высоким давлением. Система зажигания оснащена индивидуальными катушками, установленными в свечных колодцах.
- Разгон 0-100 км/ч
- Холодный запуск
- Работа мотора
Неисправности: диагностика и ремонт
Конструкция мотора рассчитана на пробег не менее 300 тыс. км. Однако существуют образцы с пробегом более 600 тыс. км без капитального ремонта. При этом двигатель не относится к категории надежных силовых агрегатов.
Распространенные поломки двигателей:
- Проблемным местом на ранних сериях двигателя 3S-FSE является механический насос. Согласно заводской инструкции, узел имеет ресурс работы 100 тыс. км, после чего производится замена ТНВД. Проверка состояния насоса проводится по показаниям датчика давления. Для этого требуется подключить мультиметр к выходам датчика или колодке контроллера двигателя. Нормативное напряжение лежит в диапазоне 2,0-3,7В. При падении значения ниже 1,3В на холостом ходу происходит остановка мотора (с фиксацией ошибки Р0191).
- Привод насоса выполнен от распределительного вала, полость с топливом отделена от картера двигателя тонким уплотнительным кольцом. Вышедший из строя сальник насоса пропускает бензин в двигатель. Зафиксировать попадание топлива можно при помощи газоанализатора, чувствительный элемент размещается в горловине для заливки масла. Допустимое значение углеводородов СН составляет 200-250 ед.
- При работе двигателя с протекающим сальником насоса наблюдаются скачки оборотов холостого хода и внезапные остановки при перегазовке. Это связано с попаданием паров бензина через систему рециркуляции во впускной коллектор, что вызывает излишнее обогащение смеси. Электроника фиксирует проблему и пытается уменьшить подачу топлива. Из-за этого и возникают сбои в работе.
- Большой расход топлива является следствием загрязнения форсунок, клапана холостого хода и элементов дроссельной заслонки. После проведения чистки расход возвращается к нормативным значениям. В конструкции дроссельного узла имеется датчик ТРС, определяющий положение заслонки. Часто при разборке узла нарушается угол установки детали, что приводит к нестабильной работе двигателя и повреждению приводов. В этом случае приходится выполнять замену ТРС или дросселя в сборе.
- При использовании некачественного бензина и изношенной поршневой группе происходит засорение напорного клапана системы рециркуляции отработавших газов. Ремонт заключается в промывке узла или отключении.
- Затрудненный запуск при пониженной температуре является следствием выхода из строя датчика температуры воздуха на впуске. При проведении диагностики в памяти блока управления будет ошибка с кодом Р0115.
- Нестабильные обороты холостого хода или затрудненный набор оборотов на двигателе 3S FSE — признак загрязнения дросселя, который необходимо промыть. В отдельных случаях требуется снятие впускного коллектора и очистка внутренних полостей (в том числе регулировочных заслонок). Также причиной может стать засоренные топливный и воздушный фильтры.
Для проверки топливной системы необходимо выполнить действия:
- Давление первого насоса при диагностике проверяется манометром. Для проведения замера давления требуется подключить прибор на рейку. После включения зажигания давление должно войти в норму (4,0-4,5 кг/см²) за 2-3 секунды.
- Повышенное давление в рампе указывает на неисправность клапана аварийного сброса давления. В этом случае будут наблюдаться проблемы с пуском горячего двигателя. Поврежденную деталь необходимо промыть в ультразвуковой ванне или заменить.
- Пониженное давление создает проблемы при запуске двигателя с любой температурой. При низких значениях давления топливо просто не пройдет через распылители форсунок.
- Большое влияние на давление топлива оказывает состояние топливных фильтров, установленных в баке. При проведении замены элементов требуется провести разборку и сборку топливной кассеты, расположенной в баке. Ошибки при установке деталей приводят к прекращению подачи топлива.
Проведение компьютерной диагностики позволяет определить поврежденные компоненты электроники, наиболее часто выходящие из строя:
- датчики положения коленчатого и распределительного вала;
- измеритель массы подаваемого в цилиндры воздуха;
- лямбда-зонды;
- датчики положения педали газа и заслонки в дроссельном узле;
- клапаны управления заслонками и фазовращателем.
Регламентные работы включают в себя:
- смену моторного масла и фильтра раз в год или через 10 тыс. км;
- заливку свежей охлаждающей жидкости через 40 тыс. км пробега (либо через каждые 2 года);
- установку новых свечей зажигания — каждые 20 тыс. км (срок службы свечей с платиновым электродом составляет 80 тыс. км);
- фильтры топлива и воздуха меняются через 40 тыс. км;
- каждые 100 тыс. км необходимо проводить замену ремня ГРМ.
- Снятие впускного коллектора
- Промывка печки
Тюнинг
Доработка моторов заключается в следующем:
- шлифовка каналов системы газораспределения и камер сгорания;
- установка распределительных валов с измененным профилем кулачков;
- монтаж модернизированного впускного коллектора и прямоточного выпуска;
- прошивка блоков управления доработанным программным обеспечением.
Подобные действия позволяют получить прибавку мощности до 15-20% при сохранении ресурса агрегата. Дальнейшие доработки включают в себя установку разрезных шестерен ГРМ, удаление фазовращателя. Ряд владельцев устанавливают турбокомпрессоры. В результате получается хорошая прибавка мощности, но ресурс моторов снижается.